Existence and nonexistence results for a singular boundary value problem arising in the theory of epitaxial growth
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F14%3A00423454" target="_blank" >RIV/67985840:_____/14:00423454 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/mma.2836" target="_blank" >http://dx.doi.org/10.1002/mma.2836</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mma.2836" target="_blank" >10.1002/mma.2836</a>
Alternative languages
Result language
angličtina
Original language name
Existence and nonexistence results for a singular boundary value problem arising in the theory of epitaxial growth
Original language description
The existence of stationary radial solutions to a partial differential equation arising in the theory of epitaxial growth is studied. It turns out that the existence or not of such solutions depends on the size of a parameter that plays the role of the velocity at which mass is introduced into the system. For small values of this parameter, we prove the existence of solutions to this boundary value problem. For large values of the same parameter, we prove the nonexistence of solutions. We also provide rigorous bounds for the values of this parameter, which separate existence from nonexistence. The proofs come as a combination of several differential inequalities and the method of upper and lower functions applied to an associated two-point boundary value problem.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Methods in the Applied Sciences
ISSN
0170-4214
e-ISSN
—
Volume of the periodical
37
Issue of the periodical within the volume
6
Country of publishing house
GB - UNITED KINGDOM
Number of pages
15
Pages from-to
793-807
UT code for WoS article
000333317600002
EID of the result in the Scopus database
—