Some scales of equivalent conditions to characterize the Stieltjes inequality: the case q < p
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F14%3A00424831" target="_blank" >RIV/67985840:_____/14:00424831 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/mana.201200118" target="_blank" >http://dx.doi.org/10.1002/mana.201200118</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.201200118" target="_blank" >10.1002/mana.201200118</a>
Alternative languages
Result language
angličtina
Original language name
Some scales of equivalent conditions to characterize the Stieltjes inequality: the case q < p
Original language description
We prove that the weighted Stieltjes inequality can be characterized by four different scales of conditions also for the case 0 < q < p < , 1 < p. In particular,a new proof of a result of G. Sinnamon [10] is given, which also covers the case 0 < q < 1. Moreover, for the situation at hand a new gluing theorem and also an equivalence theorem of independent interest are proved and discussed. By applying our new equivalence theorem to weighted inequalities for the Stieltjes transform we obtain the four newscales of conditions for characterization of Stieltjes inequality.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
—
Volume of the periodical
287
Issue of the periodical within the volume
2-3
Country of publishing house
DE - GERMANY
Number of pages
12
Pages from-to
242-253
UT code for WoS article
000337637900008
EID of the result in the Scopus database
—