All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Incompressible limits of fluids excited by moving boundaries

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F14%3A00427471" target="_blank" >RIV/67985840:_____/14:00427471 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1137/130916916" target="_blank" >http://dx.doi.org/10.1137/130916916</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/130916916" target="_blank" >10.1137/130916916</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Incompressible limits of fluids excited by moving boundaries

  • Original language description

    We consider the motion of a viscous compressible fluid confined to a physical space with a time dependent kinematic boundary. We suppose that the characteristic speed of the fluid is dominated by the speed of sound and perform the low Mach number limit in the framework of weak solutions. The standard incompressible Navier-Stokes system is identified as the target problem.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Mathematical Analysis

  • ISSN

    0036-1410

  • e-ISSN

  • Volume of the periodical

    46

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    16

  • Pages from-to

    1456-1471

  • UT code for WoS article

    000335818400016

  • EID of the result in the Scopus database