All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On solutions to the heat equation with the initial condition in the Orlicz - Slobodetskii space

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F14%3A00430331" target="_blank" >RIV/67985840:_____/14:00430331 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1017/S0308210513000218" target="_blank" >http://dx.doi.org/10.1017/S0308210513000218</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S0308210513000218" target="_blank" >10.1017/S0308210513000218</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On solutions to the heat equation with the initial condition in the Orlicz - Slobodetskii space

  • Original language description

    We study the boundary-value problem , where x , t (0,T), n-1 is a bounded Lipschitz boundary domain, u belongs to a certain Orlicz-Slobodetskii space YR,R(?). Under certain assumptions on the Orlicz function R, we prove that the solution u belongs to theOrlicz-Sobolev space W1,R(? (0,T)).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP201%2F10%2F1920" target="_blank" >GAP201/10/1920: Contemporary function spaces theory and applications</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proceedings of the Royal Society of Edinburgh. A - Mathematics

  • ISSN

    0308-2105

  • e-ISSN

  • Volume of the periodical

    144

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    21

  • Pages from-to

    787-807

  • UT code for WoS article

    000339948000009

  • EID of the result in the Scopus database