Approximating fixed points in the Hilbert ball
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F14%3A00430346" target="_blank" >RIV/67985840:_____/14:00430346 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Approximating fixed points in the Hilbert ball
Original language description
We establish a strong convergence theorem for an iterative algorithm that approximates fixed points of those self-mappings of the Hilbert ball which are nonexpansive with respect to the hyperbolic metric. We also prove an analogous strong convergence theorem regarding the behavior of approximating curves.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Nonlinear and Convex Analysis
ISSN
1345-4773
e-ISSN
—
Volume of the periodical
15
Issue of the periodical within the volume
4
Country of publishing house
JP - JAPAN
Number of pages
11
Pages from-to
819-829
UT code for WoS article
000336418700014
EID of the result in the Scopus database
—