All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Approximating fixed points in the Hilbert ball

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F14%3A00430346" target="_blank" >RIV/67985840:_____/14:00430346 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Approximating fixed points in the Hilbert ball

  • Original language description

    We establish a strong convergence theorem for an iterative algorithm that approximates fixed points of those self-mappings of the Hilbert ball which are nonexpansive with respect to the hyperbolic metric. We also prove an analogous strong convergence theorem regarding the behavior of approximating curves.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Nonlinear and Convex Analysis

  • ISSN

    1345-4773

  • e-ISSN

  • Volume of the periodical

    15

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    JP - JAPAN

  • Number of pages

    11

  • Pages from-to

    819-829

  • UT code for WoS article

    000336418700014

  • EID of the result in the Scopus database