Inviscid incompressible limits of strongly stratified fluids
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F14%3A00432120" target="_blank" >RIV/67985840:_____/14:00432120 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.3233/ASY-141231" target="_blank" >http://dx.doi.org/10.3233/ASY-141231</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/ASY-141231" target="_blank" >10.3233/ASY-141231</a>
Alternative languages
Result language
angličtina
Original language name
Inviscid incompressible limits of strongly stratified fluids
Original language description
We consider the motion of a compressible viscous fluid in the asymptotic regime of low Mach and high Reynolds numbers under strong stratification imposed by a conservative external force. Assuming a bi-dimensional character of the flow, we identify the limit system represented by the so-called lake equation ? the Euler system supplemented by an anelastic type constraint imposed by the limit density profile. The key ingredient of the proof are new ?frequency localized estimates of Strichartz type.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0917" target="_blank" >GA201/09/0917: Mathematical and computer analysis of the evolution processes in nonlinear viscoelastic fluid-like materials</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Asymptotic Analysis
ISSN
0921-7134
e-ISSN
—
Volume of the periodical
89
Issue of the periodical within the volume
3-4
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
23
Pages from-to
307-329
UT code for WoS article
000343007800004
EID of the result in the Scopus database
—