Type III and N universal spacetimes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F14%3A00433091" target="_blank" >RIV/67985840:_____/14:00433091 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1088/0264-9381/31/21/215005" target="_blank" >http://dx.doi.org/10.1088/0264-9381/31/21/215005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/0264-9381/31/21/215005" target="_blank" >10.1088/0264-9381/31/21/215005</a>
Alternative languages
Result language
angličtina
Original language name
Type III and N universal spacetimes
Original language description
Universal spacetimes solve vacuum equations of all gravitational theories, with the Lagrangian being a polynomial curvature invariant constructed from the metric, the Riemann tensor and its derivatives of arbitrary order. In the literature, universal metrics are also discussed as metrics with vanishing quantum corrections and as classical solutions to string theory. Widely known examples of universal metrics are certain Ricci-flat pp waves. In this paper, we start a general study of the geometric properties of universal metrics in arbitrary dimension and arrive at a much broader class of such metrics.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-10042S" target="_blank" >GA13-10042S: Higher dimensional gravity</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Classical and Quantum Gravity
ISSN
0264-9381
e-ISSN
—
Volume of the periodical
31
Issue of the periodical within the volume
21
Country of publishing house
GB - UNITED KINGDOM
Number of pages
21
Pages from-to
—
UT code for WoS article
000344607300013
EID of the result in the Scopus database
—