The ordering principle in a fragment of approximate counting
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F14%3A00437494" target="_blank" >RIV/67985840:_____/14:00437494 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1145/2629555" target="_blank" >http://dx.doi.org/10.1145/2629555</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/2629555" target="_blank" >10.1145/2629555</a>
Alternative languages
Result language
angličtina
Original language name
The ordering principle in a fragment of approximate counting
Original language description
The ordering principle states that every finite linear order has a least element. We show that, in the relativized setting, the surjective weak pigeonhole principle for polynomial time functions does not prove a Herbrandized version of the ordering principle over T12. This answers an open question raised in Buss et al. [2012] and completes their program to compare the strength of Jeřábek's bounded arithmetic theory for approximate counting with weakened versions of it.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ACM Transactions on Computational Logic
ISSN
1529-3785
e-ISSN
—
Volume of the periodical
15
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
—
UT code for WoS article
000345570700004
EID of the result in the Scopus database
—