Asymptotic expansions for Toeplitz operators on symmetric spaces of general type
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00434137" target="_blank" >RIV/67985840:_____/15:00434137 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1090/S0002-9947-2014-06130-8" target="_blank" >http://dx.doi.org/10.1090/S0002-9947-2014-06130-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/S0002-9947-2014-06130-8" target="_blank" >10.1090/S0002-9947-2014-06130-8</a>
Alternative languages
Result language
angličtina
Original language name
Asymptotic expansions for Toeplitz operators on symmetric spaces of general type
Original language description
A general theory of Berezin-Toeplitz quantization for symmetric spaces is presented, with emphasis on representation-theoretic asymptotic expansions, which applies to spaces of compact and non-compact type, both in the classical setting of hermitian symmetric spaces and also for their real forms. The Berezin (or Wick type) calculus and its opposite ''anti-Wick'' type calculus are treated on an equal footing.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0473" target="_blank" >GA201/09/0473: Methods of function theory and Banach algebras in operator theory IV</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
American Mathematical Society. Transactions
ISSN
0002-9947
e-ISSN
—
Volume of the periodical
367
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
54
Pages from-to
423-476
UT code for WoS article
000344826400017
EID of the result in the Scopus database
—