All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Asymptotic expansions for Toeplitz operators on symmetric spaces of general type

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00434137" target="_blank" >RIV/67985840:_____/15:00434137 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1090/S0002-9947-2014-06130-8" target="_blank" >http://dx.doi.org/10.1090/S0002-9947-2014-06130-8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1090/S0002-9947-2014-06130-8" target="_blank" >10.1090/S0002-9947-2014-06130-8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Asymptotic expansions for Toeplitz operators on symmetric spaces of general type

  • Original language description

    A general theory of Berezin-Toeplitz quantization for symmetric spaces is presented, with emphasis on representation-theoretic asymptotic expansions, which applies to spaces of compact and non-compact type, both in the classical setting of hermitian symmetric spaces and also for their real forms. The Berezin (or Wick type) calculus and its opposite ''anti-Wick'' type calculus are treated on an equal footing.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F09%2F0473" target="_blank" >GA201/09/0473: Methods of function theory and Banach algebras in operator theory IV</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    American Mathematical Society. Transactions

  • ISSN

    0002-9947

  • e-ISSN

  • Volume of the periodical

    367

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    54

  • Pages from-to

    423-476

  • UT code for WoS article

    000344826400017

  • EID of the result in the Scopus database