Compositions of (max, +) automata
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00443129" target="_blank" >RIV/67985840:_____/15:00443129 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s10626-014-0186-6" target="_blank" >http://dx.doi.org/10.1007/s10626-014-0186-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10626-014-0186-6" target="_blank" >10.1007/s10626-014-0186-6</a>
Alternative languages
Result language
angličtina
Original language name
Compositions of (max, +) automata
Original language description
This paper presents a compositional modeling approach by means of (max,+) automata. The motivation is to be able to model a complex discrete event system by composing sub-models representing its elementary parts. A direct modeling of safe timed Petri nets using (max,+) automata is first in- troduced. Based on this result, two types of synchronous product of (max,+) automata are proposed to model safe timed Petri nets obtained by merging places and/or transitions in subnets. An asynchronous product is finally pro- posed to represent particular bounded timed Petri nets.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP103%2F11%2F0517" target="_blank" >GAP103/11/0517: Decentralized supervisory control of timed automata</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Event Dynamic Systems-Theory and Applications
ISSN
0924-6703
e-ISSN
—
Volume of the periodical
25
Issue of the periodical within the volume
1-2
Country of publishing house
US - UNITED STATES
Number of pages
22
Pages from-to
323-344
UT code for WoS article
000352212000015
EID of the result in the Scopus database
2-s2.0-84926177903