Singular limits in a model of radiative flow
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00443967" target="_blank" >RIV/67985840:_____/15:00443967 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00021-015-0204-y" target="_blank" >http://dx.doi.org/10.1007/s00021-015-0204-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00021-015-0204-y" target="_blank" >10.1007/s00021-015-0204-y</a>
Alternative languages
Result language
angličtina
Original language name
Singular limits in a model of radiative flow
Original language description
We consider a ?semi-relativistic model of radiative viscous compressible Navier?Stokes?Fourier system coupled to the radiative transfer equation extending the classical model introduced in Ducomet et al. (Ann Inst Henri Poincar? AN 28:797?812, 2011) andwe study some of its singular limits (low Mach and diffusion) in the case of well-prepared initial data and Dirichlet boundary condition for the velocity field. In the low Mach number case we prove the convergence toward the incompressible Navier?Stokessystem coupled to a system of two stationary transport equations. In the diffusion case we prove the convergence toward the compressible Navier?Stokes with modified state functions (equilibrium case) or toward the compressible Navier?Stokes coupled to adiffusion equation (non equilibrium case).
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-00522S" target="_blank" >GA13-00522S: Qualitative analysis and numerical solution of problems of flows in generally time-dependent domains with various boundary conditions</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Fluid Mechanics
ISSN
1422-6928
e-ISSN
—
Volume of the periodical
17
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
40
Pages from-to
341-380
UT code for WoS article
000357576700008
EID of the result in the Scopus database
2-s2.0-84929077866