All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Singular limits in a model of radiative flow

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00443967" target="_blank" >RIV/67985840:_____/15:00443967 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s00021-015-0204-y" target="_blank" >http://dx.doi.org/10.1007/s00021-015-0204-y</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00021-015-0204-y" target="_blank" >10.1007/s00021-015-0204-y</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Singular limits in a model of radiative flow

  • Original language description

    We consider a ?semi-relativistic model of radiative viscous compressible Navier?Stokes?Fourier system coupled to the radiative transfer equation extending the classical model introduced in Ducomet et al. (Ann Inst Henri Poincar? AN 28:797?812, 2011) andwe study some of its singular limits (low Mach and diffusion) in the case of well-prepared initial data and Dirichlet boundary condition for the velocity field. In the low Mach number case we prove the convergence toward the incompressible Navier?Stokessystem coupled to a system of two stationary transport equations. In the diffusion case we prove the convergence toward the compressible Navier?Stokes with modified state functions (equilibrium case) or toward the compressible Navier?Stokes coupled to adiffusion equation (non equilibrium case).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA13-00522S" target="_blank" >GA13-00522S: Qualitative analysis and numerical solution of problems of flows in generally time-dependent domains with various boundary conditions</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Fluid Mechanics

  • ISSN

    1422-6928

  • e-ISSN

  • Volume of the periodical

    17

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    40

  • Pages from-to

    341-380

  • UT code for WoS article

    000357576700008

  • EID of the result in the Scopus database

    2-s2.0-84929077866