Exponential estimates for solutions of half-linear differential equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00446870" target="_blank" >RIV/67985840:_____/15:00446870 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14410/15:00080999
Result on the web
<a href="http://dx.doi.org/10.1007/s10474-015-0522-9" target="_blank" >http://dx.doi.org/10.1007/s10474-015-0522-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10474-015-0522-9" target="_blank" >10.1007/s10474-015-0522-9</a>
Alternative languages
Result language
angličtina
Original language name
Exponential estimates for solutions of half-linear differential equations
Original language description
This paper is concerned with estimates, unimprovable in a certain sense, for positive solutions to the half-linear differential equation ... , where p is a continuous nonnegative function on ... and .... It is shown that any positive increasing solutiony of the equation satisfies ..., with ..., for all t on the complement of a set of finite Lebesgue measure. Under an additional assumption, this estimate holds for all t. Further, a condition is established which guarantees that the equation has exponentially increasing solutions and exponentially decreasing solutions.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F10%2F1032" target="_blank" >GAP201/10/1032: Difference equations and dynamic equations on time scales III</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Mathematica Hungarica
ISSN
0236-5294
e-ISSN
—
Volume of the periodical
147
Issue of the periodical within the volume
1
Country of publishing house
HU - HUNGARY
Number of pages
14
Pages from-to
158-171
UT code for WoS article
000360411000011
EID of the result in the Scopus database
2-s2.0-84940583718