A periodic basis system of the smooth approximation space
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00447688" target="_blank" >RIV/67985840:_____/15:00447688 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.amc.2015.01.120" target="_blank" >http://dx.doi.org/10.1016/j.amc.2015.01.120</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.amc.2015.01.120" target="_blank" >10.1016/j.amc.2015.01.120</a>
Alternative languages
Result language
angličtina
Original language name
A periodic basis system of the smooth approximation space
Original language description
The paper is primarily devoted to the problem of smooth interpolation of data in 1D. In addition to the exact interpolation of data at nodes, we are also concerned with the smoothness of the interpolating curve and its derivatives. The interpolating curve is defined as the solution of a variational problem with constraints. The system of functions exp(-ikx)exp(-ikx), kk being an integer, is taken for the basis of the space where we measure the smoothness of the result. It also generates the functions used for the interpolation itself. Choosing different norms when measuring the smoothness, we arrive at different interpolating functions. We also mention the problem of smooth curve fitting (data smoothing). We discuss the proper choice of different normsfor this way of approximation and present the results of several 1D numerical examples that show the advantages and drawbacks of smooth interpolation.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-02067S" target="_blank" >GA14-02067S: Advanced methods for flow-field analysis</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Mathematics and Computation
ISSN
0096-3003
e-ISSN
—
Volume of the periodical
267
Issue of the periodical within the volume
15 September
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
436-444
UT code for WoS article
000361571100035
EID of the result in the Scopus database
2-s2.0-84942984284