On the complexity of finding falsifying assignments for Herbrand disjunctions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00449171" target="_blank" >RIV/67985840:_____/15:00449171 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00153-015-0439-6" target="_blank" >http://dx.doi.org/10.1007/s00153-015-0439-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00153-015-0439-6" target="_blank" >10.1007/s00153-015-0439-6</a>
Alternative languages
Result language
angličtina
Original language name
On the complexity of finding falsifying assignments for Herbrand disjunctions
Original language description
Suppose that $Phi$ is a consistent sentence. Then there is no Herbrand proof of $neg Phi$, which means that any Herbrand disjunction made from the prenex form of $neg Phi$ is falsifiable. We show that the problem of finding such a falsifying assignment is hard in the following sense. For every total polynomial search problem $R$, there exists a consistent $Phi$ such that finding solutions to $R$ can be reduced to finding a falsifying assignment to an Herbrand disjunction made from $neg Phi$. It has beenconjectured that there are no complete total polynomial search problems. If this conjecture is true, then for every consistent sentence $Phi$, there exists a consistent sentence $Psi$, such that the search problem associated with $Psi$ cannot be reducedto the search problem associated with $Phi$.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Archive for Mathematical Logic
ISSN
0933-5846
e-ISSN
—
Volume of the periodical
54
Issue of the periodical within the volume
7
Country of publishing house
DE - GERMANY
Number of pages
15
Pages from-to
769-783
UT code for WoS article
000363535900002
EID of the result in the Scopus database
2-s2.0-84945478316