All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the complexity of finding falsifying assignments for Herbrand disjunctions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00449171" target="_blank" >RIV/67985840:_____/15:00449171 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s00153-015-0439-6" target="_blank" >http://dx.doi.org/10.1007/s00153-015-0439-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00153-015-0439-6" target="_blank" >10.1007/s00153-015-0439-6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the complexity of finding falsifying assignments for Herbrand disjunctions

  • Original language description

    Suppose that $Phi$ is a consistent sentence. Then there is no Herbrand proof of $neg Phi$, which means that any Herbrand disjunction made from the prenex form of $neg Phi$ is falsifiable. We show that the problem of finding such a falsifying assignment is hard in the following sense. For every total polynomial search problem $R$, there exists a consistent $Phi$ such that finding solutions to $R$ can be reduced to finding a falsifying assignment to an Herbrand disjunction made from $neg Phi$. It has beenconjectured that there are no complete total polynomial search problems. If this conjecture is true, then for every consistent sentence $Phi$, there exists a consistent sentence $Psi$, such that the search problem associated with $Psi$ cannot be reducedto the search problem associated with $Phi$.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Archive for Mathematical Logic

  • ISSN

    0933-5846

  • e-ISSN

  • Volume of the periodical

    54

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    15

  • Pages from-to

    769-783

  • UT code for WoS article

    000363535900002

  • EID of the result in the Scopus database

    2-s2.0-84945478316