Invariant geometric structures on statistical models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00449264" target="_blank" >RIV/67985840:_____/15:00449264 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-25040-3_17" target="_blank" >http://dx.doi.org/10.1007/978-3-319-25040-3_17</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-25040-3_17" target="_blank" >10.1007/978-3-319-25040-3_17</a>
Alternative languages
Result language
angličtina
Original language name
Invariant geometric structures on statistical models
Original language description
We review the notion of parametrized measure models and tensor fields on them, which encompasses all statistical models considered by Chentsov [6], Amari [3] and Pistone-Sempi [10]. We give a complete description of n-tensor fields that are invariant under sufficient statistics. In the cases n = 2 and n = 3, the only such tensors are the Fisher metric and the Amari-Chentsov tensor. While this has been shown by Chentsov [7] and Campbell [5] in the case of finite measure spaces, our approach allows to generalize these results to the cases of infinite sample spaces and arbitrary n. Furthermore, we give a generalisation of the monotonicity theorem and discuss its consequences.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Geometric Science of Information
ISBN
978-3-319-25039-7
ISSN
—
e-ISSN
—
Number of pages
9
Pages from-to
150-158
Publisher name
Springer
Place of publication
Cham
Event location
Palaiseau
Event date
Oct 28, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—