Why quintic polynomial equations are not solvable in radicals
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00450751" target="_blank" >RIV/67985840:_____/15:00450751 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Why quintic polynomial equations are not solvable in radicals
Original language description
We illustrate the main idea of Galois theory, by which roots of a polynomial equation of at least fifth degree with rational coefficients cannot general be expressed bz radicals, i.e., by the operations +, -, ., :, and .... Therefore, higher order polynomial equations are usually solved by approximate methods. They can also be solved algebraically by means of ultraradicals.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Applications of Mathematics 2015
ISBN
978-80-85823-65-3
ISSN
—
e-ISSN
—
Number of pages
7
Pages from-to
125-131
Publisher name
Institute of Mathematics CAS
Place of publication
Prague
Event location
Prague
Event date
Nov 18, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—