On the number of stationary patterns in reaction-diffusion systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00450753" target="_blank" >RIV/67985840:_____/15:00450753 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On the number of stationary patterns in reaction-diffusion systems
Original language description
We study systems of two nonlinear reaction-diffusion partial differential equations undergoing diffusion driven instability. Such systems may have spatially inhomogeneous stationary solutions called Turing patterns. These solutions are typically non-unique and it is not clear how many of them exists. Since there are no analytical results available, we look for the number of distinct stationary solutions numerically. As a typical example, we investigate the reaction-diffusion systém designed to model coat patterns in leopard and jaguar.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Applications of Mathematics 2015
ISBN
978-80-85823-65-3
ISSN
—
e-ISSN
—
Number of pages
11
Pages from-to
206-216
Publisher name
Institute of Mathematics CAS
Place of publication
Prague
Event location
Prague
Event date
Nov 18, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—