Separable reductions and rich families in theory of Fréchet subdifferentials
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00452804" target="_blank" >RIV/67985840:_____/15:00452804 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Separable reductions and rich families in theory of Fréchet subdifferentials
Original language description
We consider important properties of Fréchet subdifferentials, in particular: the non-emptiness of subdifferentials, the non-zeroness of normal cones, the fuzzy calculus, and the extremal principle; all statements being considered in Fréchet sense. Givena nonseparable Banach space X, we show how the validity of these statements is implied by the validity of them in every separable subspace of X. Such a reasoning is called ?separable reduction. We show that, behind this approach, there is a modern and powerful concept of rich subfamily of the family of all separable subspaces of X.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F12%2F0290" target="_blank" >GAP201/12/0290: Topological and geometrical properties of Banach spaces and operator algebras</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Variational Analysis and its Applications
ISBN
978-80-7378-288-7
ISSN
—
e-ISSN
—
Number of pages
39
Pages from-to
1-39
Publisher name
Matfyzpress
Place of publication
Praha
Event location
Paseky nad Jizerou
Event date
Apr 19, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—