A spectral criterion for stability of a steady viscous incompressible flow past an obstacle
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00457135" target="_blank" >RIV/67985840:_____/16:00457135 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00021-015-0239-0" target="_blank" >http://dx.doi.org/10.1007/s00021-015-0239-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00021-015-0239-0" target="_blank" >10.1007/s00021-015-0239-0</a>
Alternative languages
Result language
angličtina
Original language name
A spectral criterion for stability of a steady viscous incompressible flow past an obstacle
Original language description
We show that the question of stability of a steady incompressible Navier-Stokes flow V in a 3D exterior domain Ω is essentially a finite-dimensional problem (Theorem 3.2). Although the associated linearized operator has an essential spectrum touching the imaginary axis, we show that certain assumptions on the eigenvalues of this operator guarantee the stability of flow V (Theorem 4.1). No assumption on the smallness of the steady flow V is required.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-00522S" target="_blank" >GA13-00522S: Qualitative analysis and numerical solution of problems of flows in generally time-dependent domains with various boundary conditions</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Fluid Mechanics
ISSN
1422-6928
e-ISSN
—
Volume of the periodical
18
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
24
Pages from-to
133-156
UT code for WoS article
000370823400006
EID of the result in the Scopus database
2-s2.0-84958774176