On uniformly differentiable mappings from $ell_{infty}(Gamma)$
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00458238" target="_blank" >RIV/67985840:_____/16:00458238 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jmaa.2016.02.043" target="_blank" >http://dx.doi.org/10.1016/j.jmaa.2016.02.043</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2016.02.043" target="_blank" >10.1016/j.jmaa.2016.02.043</a>
Alternative languages
Result language
angličtina
Original language name
On uniformly differentiable mappings from $ell_{infty}(Gamma)$
Original language description
In 1970 Haskell Rosenthal proved that if X is a Banach space, ... is an infinite index set, and ... is a bounded linear operator such that infγ ... then T acts as an isomorphism on ..., for some ... of the same cardinality as ... Our main result is a nonlinear strengthening of this theorem. More precisely, under the assumption of GCH and the regularity of ..., we show that if ... is uniformly differentiable and such that infγ ... then there exists ... such that ... is a bounded linear operator which acts as an isomorphism on ..., for some ... of the same cardinality as ...
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA16-07378S" target="_blank" >GA16-07378S: Nonlinear analysis in Banach spaces</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Volume of the periodical
439
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
125-134
UT code for WoS article
000372941500007
EID of the result in the Scopus database
2-s2.0-84960539813