All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Size-treewidth tradeoffs for circuits computing the element distinctness function

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00458244" target="_blank" >RIV/67985840:_____/16:00458244 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.4230/LIPIcs.STACS.2016.56" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.STACS.2016.56</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.STACS.2016.56" target="_blank" >10.4230/LIPIcs.STACS.2016.56</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Size-treewidth tradeoffs for circuits computing the element distinctness function

  • Original language description

    In this work we study the relationship between size and treewidth of circuits computing variants of the element distinctness function. First, we show that for each n, any circuit of treewidth t computing the element distinctness function delta_n:{0,1}^n -> {0,1} must have size at least Omega((n^2)/(2^{O(t)}times log(n))). This result provides a non-trivial generalization of a super-linear lower bound for the size of Boolean formulas (treewidth 1) due to Neciporuk. Subsequently, we turn our attention to read-once circuits, which are circuits where each variable labels at most one input vertex. For each n, we show that any read-once circuit of treewidth t and size s computing a variant tau_n:{0,1}^n -> {0,1} of the element distinctness function must satisfy the inequality t times log(s) >= Omega(n/log(n)).

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016)

  • ISBN

    978-3-95977-001-9

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

    1-14

  • Publisher name

    Schloss Dagstuhl, Leibniz-Zentrum für Informatik

  • Place of publication

    Dagstuhl

  • Event location

    Orléans

  • Event date

    Feb 17, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article