The Kurzweil integral in financial market modeling
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00459263" target="_blank" >RIV/67985840:_____/16:00459263 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.21136/MB.2016.18" target="_blank" >http://dx.doi.org/10.21136/MB.2016.18</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21136/MB.2016.18" target="_blank" >10.21136/MB.2016.18</a>
Alternative languages
Result language
angličtina
Original language name
The Kurzweil integral in financial market modeling
Original language description
Certain financial market strategies are known to exhibit a hysteretic structure similar to the memory observed in plasticity, ferromagnetism, or magnetostriction. The main difference is that in financial markets, the spontaneous occurrence of discontinuities in the time evolution has to be taken into account. We show that one particular market model considered here admits a representation in terms of Prandtl-Ishlinskii hysteresis operators, which are extended in order to include possible discontinuities both in time and in memory. The main analytical tool is the Kurzweil integral formalism, and the main result proves the well-posedness of the process in the space of right-continuous regulated functions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA15-12227S" target="_blank" >GA15-12227S: Analysis of mathematical models of multifunctional materials with hysteresis</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematica Bohemica
ISSN
0862-7959
e-ISSN
—
Volume of the periodical
141
Issue of the periodical within the volume
2
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
26
Pages from-to
261-286
UT code for WoS article
000416921200009
EID of the result in the Scopus database
2-s2.0-84983035983