Error analysis of the finite element and finite volume methods for some viscoelastic fluids
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00460085" target="_blank" >RIV/67985840:_____/16:00460085 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1515/jnma-2014-0057" target="_blank" >http://dx.doi.org/10.1515/jnma-2014-0057</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/jnma-2014-0057" target="_blank" >10.1515/jnma-2014-0057</a>
Alternative languages
Result language
angličtina
Original language name
Error analysis of the finite element and finite volume methods for some viscoelastic fluids
Original language description
We present the error analysis of a particular Oldroyd-B type model with the limiting Weissenberg number going to infinity. Assuming a suitable regularity of the exact solution we study the error estimates of a standard finite element method and of a combined finite element/finite volume method. Our theoretical result shows first order convergence of the finite element method and the error of the order O (h(3/4)) for the finite element/finite volume method. These error estimates are compared and confirmed by the numerical experiments.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F11%2F1304" target="_blank" >GAP201/11/1304: Flow of fluids in domains with variable geometry</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Numerical Mathematics
ISSN
1570-2820
e-ISSN
—
Volume of the periodical
24
Issue of the periodical within the volume
2
Country of publishing house
DE - GERMANY
Number of pages
19
Pages from-to
105-123
UT code for WoS article
000377896600003
EID of the result in the Scopus database
2-s2.0-84975786976