All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Bounded convergence theorem for abstract Kurzweil–Stieltjes integral

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00460232" target="_blank" >RIV/67985840:_____/16:00460232 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s00605-015-0774-z" target="_blank" >http://dx.doi.org/10.1007/s00605-015-0774-z</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00605-015-0774-z" target="_blank" >10.1007/s00605-015-0774-z</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Bounded convergence theorem for abstract Kurzweil–Stieltjes integral

  • Original language description

    In the theories of Lebesgue integration and of ordinary differential equations, the Lebesgue Dominated Convergence Theorem provides one of the most widely used tools. Available analogy in the Riemann or Riemann–Stieltjes integration is the Bounded Convergence Theorem, sometimes called also the Arzelà or Arzelà–Osgood or Osgood Theorem. In the setting of the Kurzweil–Stieltjes integral for real valued functions its proof can be obtained by a slight modification of the proof given for the ...-Young–Stieltjes integral by T.H. Hildebrandt in his monograph from 1963. However, it is clear that the Hildebrandt’s proof cannot be extended to the case of Banach space-valued functions. Moreover, it essentially utilizes the Arzelà Lemma which does not fit too much into elementary text-books. In this paper, we present the proof of the Bounded Convergence Theorem for the abstract Kurzweil–Stieltjes integral in a setting elementary as much as possible. In the theories of Lebesgue integration and of ordinary differential equations, the Lebesgue Dominated Convergence Theorem provides one of the most widely used tools. Available analogy in the Riemann or Riemann–Stieltjes integration is the Bounded Convergence Theorem, sometimes called also the Arzelà or Arzelà–Osgood or Osgood Theorem. In the setting of the Kurzweil–Stieltjes integral for real valued functions its proof can be obtained by a slight modification of the proof given for the ...-Young–Stieltjes integral by T.H. Hildebrandt in his monograph from 1963. However, it is clear that the Hildebrandt’s proof cannot be extended to the case of Banach space-valued functions. Moreover, it essentially utilizes the Arzelà Lemma which does not fit too much into elementary text-books. In this paper, we present the proof of the Bounded Convergence Theorem for the abstract Kurzweil–Stieltjes integral in a setting elementary as much as possible.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA14-06958S" target="_blank" >GA14-06958S: Singularities and impulses in boundary value problems for nonlinear ordinary differential equations</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Monatshefte für Mathematik

  • ISSN

    0026-9255

  • e-ISSN

  • Volume of the periodical

    180

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    AT - AUSTRIA

  • Number of pages

    26

  • Pages from-to

    409-434

  • UT code for WoS article

    000378786900001

  • EID of the result in the Scopus database

    2-s2.0-84931049667