All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The Ascoli property for function spaces and the weak topology of Banach and Fréchet spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00460235" target="_blank" >RIV/67985840:_____/16:00460235 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.4064/sm8289-4-2016" target="_blank" >http://dx.doi.org/10.4064/sm8289-4-2016</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4064/sm8289-4-2016" target="_blank" >10.4064/sm8289-4-2016</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The Ascoli property for function spaces and the weak topology of Banach and Fréchet spaces

  • Original language description

    Following Banakh and Gabriyelyan (2016) we say that a Tychonoff space X is an Ascoli space if every compact subset K of C-k (X) is evenly continuous; this notion is closely related to the classical Ascoli theorem. Every k(R)-space, hence any k-space, is Ascoli. Let X be a metrizable space. We prove that the space C-k (X) is Ascoli iff C-k (X) is a k(R)-space iff X is locally compact. Moreover, C-k (X) endowed with the weak topology is Ascoli iff X is countable and discrete. Using some basic concepts from probability theory and measure-theoretic properties of l(1), we show that the following assertions are equivalent for a Banach space E : (i) E does not contain an isomorphic copy of l(1), (ii) every real-valued sequentially continuous map on the unit ball B-w with the weak topology is continuous, (iii) B-w is a k(R)-space, (iv) B-w is an Ascoli space.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GF16-34860L" target="_blank" >GF16-34860L: Logic and Topology in Banach spaces</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Studia mathematica

  • ISSN

    0039-3223

  • e-ISSN

  • Volume of the periodical

    233

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    PL - POLAND

  • Number of pages

    21

  • Pages from-to

    119-139

  • UT code for WoS article

    000376610400002

  • EID of the result in the Scopus database

    2-s2.0-84973517393