A short note on $L^q$ theory for Stokes problem with a pressure-dependent viscosity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00460394" target="_blank" >RIV/67985840:_____/16:00460394 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s10587-016-0258-x" target="_blank" >http://dx.doi.org/10.1007/s10587-016-0258-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10587-016-0258-x" target="_blank" >10.1007/s10587-016-0258-x</a>
Alternative languages
Result language
angličtina
Original language name
A short note on $L^q$ theory for Stokes problem with a pressure-dependent viscosity
Original language description
We study higher local integrability of a weak solution to the steady Stokes problem. We consider the case of a pressure- and shear-rate-dependent viscosity, i.e., the elliptic part of the Stokes problem is assumed to be nonlinear and it depends on p and on the symmetric part of a gradient of u, namely, it is represented by a stress tensor T (Du, p):= v(p, |D|2)D which satisfies r-growth condition with r in (1, 2]. In order to get the main result, we use Calderón-Zygmund theory and the method which was presented for example in the paper Caffarelli, Peral (1998).
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-00522S" target="_blank" >GA13-00522S: Qualitative analysis and numerical solution of problems of flows in generally time-dependent domains with various boundary conditions</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Czechoslovak Mathematical Journal
ISSN
0011-4642
e-ISSN
—
Volume of the periodical
66
Issue of the periodical within the volume
2
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
13
Pages from-to
317-329
UT code for WoS article
000379059500003
EID of the result in the Scopus database
2-s2.0-84976448886