All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A short note on $L^q$ theory for Stokes problem with a pressure-dependent viscosity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00460394" target="_blank" >RIV/67985840:_____/16:00460394 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s10587-016-0258-x" target="_blank" >http://dx.doi.org/10.1007/s10587-016-0258-x</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10587-016-0258-x" target="_blank" >10.1007/s10587-016-0258-x</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A short note on $L^q$ theory for Stokes problem with a pressure-dependent viscosity

  • Original language description

    We study higher local integrability of a weak solution to the steady Stokes problem. We consider the case of a pressure- and shear-rate-dependent viscosity, i.e., the elliptic part of the Stokes problem is assumed to be nonlinear and it depends on p and on the symmetric part of a gradient of u, namely, it is represented by a stress tensor T (Du, p):= v(p, |D|2)D which satisfies r-growth condition with r in (1, 2]. In order to get the main result, we use Calderón-Zygmund theory and the method which was presented for example in the paper Caffarelli, Peral (1998).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA13-00522S" target="_blank" >GA13-00522S: Qualitative analysis and numerical solution of problems of flows in generally time-dependent domains with various boundary conditions</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Czechoslovak Mathematical Journal

  • ISSN

    0011-4642

  • e-ISSN

  • Volume of the periodical

    66

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    13

  • Pages from-to

    317-329

  • UT code for WoS article

    000379059500003

  • EID of the result in the Scopus database

    2-s2.0-84976448886