All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Piecewise Testable Languages and Nondeterministic Automata

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00462039" target="_blank" >RIV/67985840:_____/16:00462039 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.67" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.67</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.67" target="_blank" >10.4230/LIPIcs.MFCS.2016.67</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Piecewise Testable Languages and Nondeterministic Automata

  • Original language description

    A regular language is $k$-piecewise testable if it is a finite boolean combination of languages of the form $Sigma^* a_1 Sigma^* cdots Sigma^* a_n Sigma^*$, where $a_iinSigma$ and $0le n le k$. Given a DFA $A$ and $kge 0$, it is an NL-complete problem to decide whether the language $L(A)$ is piecewise testable and, for $kge 4$, it is coNP-complete to decide whether the language $L(A)$ is $k$-piecewise testable. It is known that the depth of the minimal DFA serves as an upper bound on $k$. Namely, if $L(A)$ is piecewise testable, then it is $k$-piecewise testable for $k$ equal to the depth of $A$. In this paper, we show that some form of nondeterminism does not violate this upper bound result. Specifically, we define a class of NFAs, called ptNFAs, that recognize piecewise testable languages and show that the depth of a ptNFA provides an (up to exponentially better) upper bound on $k$ than the minimal DFA. We provide an application of our result, discuss the relationship between k-piecewise testability and the depth of NFAs, and study the complexity of k-piecewise testability for ptNFAs.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016)

  • ISBN

    978-3-95977-016-3

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

  • Publisher name

    Schloss Dagstuhl, Leibniz-Zentrum fuer Informatik

  • Place of publication

    Dagstuhl

  • Event location

    Krakow

  • Event date

    Aug 22, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article