All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the Complexity of Universality for Partially Ordered NFAs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00462042" target="_blank" >RIV/67985840:_____/16:00462042 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.61" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.61</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.61" target="_blank" >10.4230/LIPIcs.MFCS.2016.61</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the Complexity of Universality for Partially Ordered NFAs

  • Original language description

    Partially ordered nondeterminsitic finite automata (poNFAs) are NFAs whose transition relation induces a partial order on states, i.e., for which cycles occur only in the form of self-loops on a single state. A poNFA is universal if it accepts all words over its input alphabet. Deciding universality is PSpace-complete for poNFAs, and we show that this remains true even when restricting to a fixed alphabet. This is nontrivial since standard encodings of alphabet symbols in, e.g., binary can turn self-loops into longer cycles. A lower coNP-complete complexity bound can be obtained if we require that all self-loops in the poNFA are deterministic, in the sense that the symbol read in the loop cannot occur in any other transition from that state. We find that such restricted poNFAs (rpoNFAs) characterise the class of R-trivial languages, and we establish the complexity of deciding if the language of an NFA is R-trivial. Nevertheless, the limitation to fixed alphabets turns out to be essential even in the restricted case: deciding universality of rpoNFAs with unbounded alphabets is PSPACE-complete. Our results also prove the complexity of the inclusion and equivalence problems, since universality provides the lower bound, while the upper bound is mostly known or proved in the paper.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016)

  • ISBN

    978-3-95977-016-3

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

  • Publisher name

    Schloss Dagstuhl, Leibniz-Zentrum fuer Informatik

  • Place of publication

    Dagstuhl

  • Event location

    Krakow

  • Event date

    Aug 22, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article