On the Friedmann equation for the three-dimensional hypersphere
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00462143" target="_blank" >RIV/67985840:_____/16:00462143 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On the Friedmann equation for the three-dimensional hypersphere
Original language description
The present standard cosmological model of the evolution of our universe, is based on the Friedmann equation, which was published by Alexander Friedmann in 1922. He applied Einstein’s equations to an expanding threedimensional sphere which enabled him to avoid boundary conditions. However, his description was very brief. Therefore, the main objective of this article is to detailed a derivation of the Friedmann equation for an unknown expansion function a = a(t) representing the radius of the universe. Furthermore, we present serious arguments showing why the validity of Einstein’s equations should not be extrapolated to the entire universe.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BN - Astronomy and celestial mechanics, astrophysics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the International Conference Cosmology on Small Scales 2016 : Local Hubble Expansion and Selected Controversies in Cosmology
ISBN
978-80-85823-66-0
ISSN
—
e-ISSN
—
Number of pages
20
Pages from-to
159-178
Publisher name
Institute of Mathematics, Czech Academy of Sciences
Place of publication
Prague
Event location
Prague
Event date
Sep 21, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—