Cluster algebras bases on vertex operator algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00465183" target="_blank" >RIV/67985840:_____/16:00465183 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1142/S0217979216400300" target="_blank" >http://dx.doi.org/10.1142/S0217979216400300</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0217979216400300" target="_blank" >10.1142/S0217979216400300</a>
Alternative languages
Result language
angličtina
Original language name
Cluster algebras bases on vertex operator algebras
Original language description
Starting from Zhu recursion formulas for correlation functions for vertex operator algebras with formal parameters associated to local coordinates around marked points on a Riemann surfaces, we introduce a cluster algebra structure over a noncommutative set of variables. Cluster elements and mutation rules are explicitly de ned. In particular, we propose an elliptic version of vertex operator cluster algebras arising from correlation functions and Zhu reduction procedure for vertex operators on the torus.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Modern Physics B
ISSN
0217-9792
e-ISSN
—
Volume of the periodical
30
Issue of the periodical within the volume
28-29
Country of publishing house
SG - SINGAPORE
Number of pages
13
Pages from-to
—
UT code for WoS article
000388486900029
EID of the result in the Scopus database
2-s2.0-84994756599