Causality in Bounded Petri Nets is MSO Definable
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00465187" target="_blank" >RIV/67985840:_____/16:00465187 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-662-52921-8_13" target="_blank" >http://dx.doi.org/10.1007/978-3-662-52921-8_13</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-662-52921-8_13" target="_blank" >10.1007/978-3-662-52921-8_13</a>
Alternative languages
Result language
angličtina
Original language name
Causality in Bounded Petri Nets is MSO Definable
Original language description
In this work we show that the causal behaviour of any bounded Petri net is definable in monadic second order (MSO) logic. Our proof relies in a definability vs recognizability result for DAGs whose edges and vertices can be covered by a constant number of paths. Our notion of recognizability is defined in terms of saturated slice automata, a formalism for the specification of infinite families of graphs. We show that a family G of k-coverable DAGs is recognizable by a saturated slice automaton if and only if G is definable in monadic second order logic. This result generalizes Büchi’s theorem from the context of strings, to the context of k-coverable DAGs.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Logic, Language, Information, and Computation
ISBN
978-3-662-52920-1
ISSN
0302-9743
e-ISSN
—
Number of pages
15
Pages from-to
200-214
Publisher name
Springer
Place of publication
Berlin
Event location
Puebla
Event date
Aug 16, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000389705800013