Weak solutions to problems involving inviscid fluids
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00466768" target="_blank" >RIV/67985840:_____/16:00466768 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-4-431-56457-7_13" target="_blank" >http://dx.doi.org/10.1007/978-4-431-56457-7_13</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-4-431-56457-7_13" target="_blank" >10.1007/978-4-431-56457-7_13</a>
Alternative languages
Result language
angličtina
Original language name
Weak solutions to problems involving inviscid fluids
Original language description
We consider an abstract functional-differential equation derived from the pressureless Euler system with variable coefficients that includes several systems of partial differential equations arising in the fluid mechanics. Using the method of convex integration we show the existence of infinitely many weak solutions for prescribed initial data and kinetic energy.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Mathematical Fluid Dynamics, Present and Future
ISBN
978-4-431-56455-3
ISSN
2194-1009
e-ISSN
—
Number of pages
23
Pages from-to
377-399
Publisher name
Springer
Place of publication
Tokyo
Event location
Tokyo
Event date
Nov 11, 2014
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—