Asymptotic formulae for solutions of half-linear differential equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00461884" target="_blank" >RIV/67985840:_____/17:00461884 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.amc.2016.07.020" target="_blank" >http://dx.doi.org/10.1016/j.amc.2016.07.020</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.amc.2016.07.020" target="_blank" >10.1016/j.amc.2016.07.020</a>
Alternative languages
Result language
angličtina
Original language name
Asymptotic formulae for solutions of half-linear differential equations
Original language description
We establish asymptotic formulae for regularly varying solutions of the half-linear differential equation ..., where r, p are positive continuous functions on ... and ... The results can be understood in several ways: Some open problems posed in the literature are solved. Results for linear differential equations are generalized: some of the observations are new even in the linear case. A refinement on information about behavior of solutions in standard asymptotic classes is provided. A precise description of regularly varying solutions which are known to exist is given. Regular variation of all positive solutions is proved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Mathematics and Computation
ISSN
0096-3003
e-ISSN
—
Volume of the periodical
292
Issue of the periodical within the volume
January
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
165-177
UT code for WoS article
000384397400016
EID of the result in the Scopus database
2-s2.0-84980417597