On Valdivia strong version of Nikodym boundedness property
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00464470" target="_blank" >RIV/67985840:_____/17:00464470 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jmaa.2016.08.032" target="_blank" >http://dx.doi.org/10.1016/j.jmaa.2016.08.032</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2016.08.032" target="_blank" >10.1016/j.jmaa.2016.08.032</a>
Alternative languages
Result language
angličtina
Original language name
On Valdivia strong version of Nikodym boundedness property
Original language description
Following Schachermayer, a subset BB of an algebra AA of subsets of omega is said to have the N-property if a BB-pointwise bounded subset M of ba(A)ba(A) is uniformly bounded on AA, where ba(A)ba(A) is the Banach space of the real (or complex) finitely additive measures of bounded variation defined on AA. Moreover BB is said to have the strong N-property if for each increasing countable covering (Bm)m(Bm)m of BB there exists BnBn which has the N-property. The classical Nikodym-Grothendieck's theorem says that each omega-algebra SS of subsets of Omega has the N-property.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF16-34860L" target="_blank" >GF16-34860L: Logic and Topology in Banach spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Volume of the periodical
446
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
17
Pages from-to
1-17
UT code for WoS article
000386982000001
EID of the result in the Scopus database
2-s2.0-84994141788