A separable Fréchet space of almost universal disposition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00469673" target="_blank" >RIV/67985840:_____/17:00469673 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jfa.2016.09.019" target="_blank" >http://dx.doi.org/10.1016/j.jfa.2016.09.019</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jfa.2016.09.019" target="_blank" >10.1016/j.jfa.2016.09.019</a>
Alternative languages
Result language
angličtina
Original language name
A separable Fréchet space of almost universal disposition
Original language description
The Gurarii space is the unique separable Banach space. G which is of almost universal disposition for finite-dimensional Banach spaces, which means that for every. ..., for all finite-dimensional normed spaces . ..., for every isometric embedding. e:E...G there exists an . ...-isometric embedding. f:F...G such that. fE=e. We show that . GN with a special sequence of semi-norms is of almost universal disposition for finite-dimensional graded Fréchet spaces. The construction relies heavily on the universal operator on the Gurarii space, recently constructed by Garbulińska-Wegrzyn and the third author. In addition, we consider a non-graded sequence of semi-norms on. GN with which the space. GN is of almost universal disposition for finite-dimensional Fréchet spaces with a fixed sequence of semi-norms. In both cases, this yields in particular that. GN is universal in the class of all separable Fréchet spaces.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF16-34860L" target="_blank" >GF16-34860L: Logic and Topology in Banach spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Functional Analysis
ISSN
0022-1236
e-ISSN
—
Volume of the periodical
272
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
16
Pages from-to
1876-1891
UT code for WoS article
000393087600004
EID of the result in the Scopus database
2-s2.0-85002235387