A van der Corput-type lemma for power bounded operators
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00470373" target="_blank" >RIV/67985840:_____/17:00470373 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00209-016-1701-2" target="_blank" >http://dx.doi.org/10.1007/s00209-016-1701-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00209-016-1701-2" target="_blank" >10.1007/s00209-016-1701-2</a>
Alternative languages
Result language
angličtina
Original language name
A van der Corput-type lemma for power bounded operators
Original language description
We prove a van der Corput-type lemma for power bounded Hilbert space operators. As a corollary we show that ... converges in the strong operator topology for all power bounded Hilbert space operators T and all polynomials p satisfying .... This generalizes known results for Hilbert space contractions. Similar results are true also for bounded strongly continuous semigroups of operators.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA14-07880S" target="_blank" >GA14-07880S: Methods of function theory and Banach algebras in operator theory V.</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Zeitschrift
ISSN
0025-5874
e-ISSN
—
Volume of the periodical
285
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
16
Pages from-to
143-158
UT code for WoS article
000392318200005
EID of the result in the Scopus database
2-s2.0-85009990580