Periodic solutions to second-order indefinite singular equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00474090" target="_blank" >RIV/67985840:_____/17:00474090 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jde.2017.02.044" target="_blank" >http://dx.doi.org/10.1016/j.jde.2017.02.044</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2017.02.044" target="_blank" >10.1016/j.jde.2017.02.044</a>
Alternative languages
Result language
angličtina
Original language name
Periodic solutions to second-order indefinite singular equations
Original language description
The efficient conditions guaranteeing the existence of a T-periodic solution to the second order differential equation u...=h(t)g(u) are established in the paper. Here, g is a positive and decreasing function which has a strong singularity at the origin, and the weight hin(R/TZ) is a sign-changing function. The obtained results have the form of relation between the multiplicities of the zeroes of the weight function h and the order of the singularity of the nonlinear term. The approach is based on Leray–Schauder degree theory, proving that no T-periodic solution of a certain homotopy appears on the boundary of an unbounded open set during the deformation to an autonomous problém.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
—
Volume of the periodical
263
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
19
Pages from-to
451-469
UT code for WoS article
000400123300014
EID of the result in the Scopus database
2-s2.0-85014590033