All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Tighter Hard Instances for PPSZ

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00476174" target="_blank" >RIV/67985840:_____/17:00476174 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.85" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.85</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.85" target="_blank" >10.4230/LIPIcs.ICALP.2017.85</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Tighter Hard Instances for PPSZ

  • Original language description

    We construct uniquely satisfiable k-CNF formulas that are hard for the PPSZ algorithm, the currently best known algorithm solving k-SAT. This algorithm tries to generate a satisfying assignment by picking a random variable at a time and attempting to derive its value using some inference heuristic and otherwise assigning a random value. The weak PPSZ checks all subformulas of a given size to derive a value and the strong PPSZ runs resolution with width bounded by some given function. Firstly, we construct graph-instances on which weak PPSZ has savings of at most (2 + epsilon)/k: the saving of an algorithm on an input formula with n variables is the largest gamma such that the algorithm succeeds (i.e. finds a satisfying assignment) with probability at least 2^{- (1 - gamma) n}. Since PPSZ (both weak and strong) is known to have savings of at least (pi^2 + o(1))/6k, this is optimal up to the constant factor.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)

  • ISBN

    978-3-95977-041-5

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

  • Publisher name

    Schloss Dagstuhl, Leibniz-Zentrum für Informatik

  • Place of publication

    Dagstuhl

  • Event location

    Warsaw

  • Event date

    Jul 10, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article