All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cliques in dense inhomogenous random graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00476966" target="_blank" >RIV/67985840:_____/17:00476966 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985807:_____/17:00506904

  • Result on the web

    <a href="http://dx.doi.org/10.1002/rsa.20715" target="_blank" >http://dx.doi.org/10.1002/rsa.20715</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/rsa.20715" target="_blank" >10.1002/rsa.20715</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cliques in dense inhomogenous random graphs

  • Original language description

    The theory of dense graph limits comes with a natural sampling process which yields an inhomogeneous variant $RG(n,W)$ of the ErdH{o}s--R'{e}nyi random graph. Here we study the clique number of these random graphs. We establish the concentration of the clique number of $RG(n,W)$ for each fixed $n$, and give examples of graphons for which $RG(n,W)$ exhibits wild long-term behavior. Our main result is an asymptotic formula which gives the almost sure clique number of these random graphs. We obtain a similar result for the bipartite version of the problem. We also make an observation that might be of independent interest: Every graphon avoiding a fixed graph is countably-partite.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA16-07378S" target="_blank" >GA16-07378S: Nonlinear analysis in Banach spaces</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Random Structures and Algorithms

  • ISSN

    1042-9832

  • e-ISSN

  • Volume of the periodical

    51

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    40

  • Pages from-to

    275-314

  • UT code for WoS article

    000406861100004

  • EID of the result in the Scopus database

    2-s2.0-85017344497