Local theory for 2-functors on path 2-groupoids
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00477634" target="_blank" >RIV/67985840:_____/17:00477634 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s40062-016-0140-4" target="_blank" >http://dx.doi.org/10.1007/s40062-016-0140-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s40062-016-0140-4" target="_blank" >10.1007/s40062-016-0140-4</a>
Alternative languages
Result language
angličtina
Original language name
Local theory for 2-functors on path 2-groupoids
Original language description
This article is concerned with 2-functors defined on the path 2-groupoid of a smooth manifold. We set up a procedure to extract local data of such 2-functors, similar to the extraction of transition functions of a fibre bundle. The main result of this paper establishes an equivalence between the globally defined 2-functors and their local data. This is a contribution to a project that provides an axiomatic formulation of connections on (possibly non-abelian) gerbes in terms of 2-functors, of which the present paper provides the first part. The second part provides equivalences between the local data, on one side, and various existing versions of gerbes with connection on the other side.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Homotopy and Related Structures
ISSN
2193-8407
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
3
Country of publishing house
GE - GEORGIA
Number of pages
42
Pages from-to
617-658
UT code for WoS article
000408700500004
EID of the result in the Scopus database
2-s2.0-85028601701