Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00477756" target="_blank" >RIV/67985840:_____/17:00477756 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.3934/dcdsb.2017190" target="_blank" >http://dx.doi.org/10.3934/dcdsb.2017190</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3934/dcdsb.2017190" target="_blank" >10.3934/dcdsb.2017190</a>
Alternative languages
Result language
angličtina
Original language name
Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions
Original language description
It is well known that the Prandtl-Ishlinskii hysteresis operator is locally Lipschitz continuous in the space of continuous functions provided its primary response curve is convex or concave. This property can easily be extended to any absolutely continuous primary response curve with derivative of locally bounded variation. Under the same condition, the Prandtl-Ishlinskii operator in the Kurzweil integral setting is locally Lipschitz continuous also in the space of regulated functions. This paper shows that the Prandtl-Ishlinskii operator is still continuous if the primary response curve is only monotone and continuous, and that it may not even be locally Hölder continuous for continuously differentiable primary response curves.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA15-12227S" target="_blank" >GA15-12227S: Analysis of mathematical models of multifunctional materials with hysteresis</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete and Continuous Dynamical Systems-Series B
ISSN
1531-3492
e-ISSN
—
Volume of the periodical
22
Issue of the periodical within the volume
10
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
3783-3795
UT code for WoS article
000409969500010
EID of the result in the Scopus database
2-s2.0-85028706646