All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Restricting uniformly open surjections

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00480050" target="_blank" >RIV/67985840:_____/17:00480050 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/17:10368191

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.crma.2017.09.008" target="_blank" >http://dx.doi.org/10.1016/j.crma.2017.09.008</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.crma.2017.09.008" target="_blank" >10.1016/j.crma.2017.09.008</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Restricting uniformly open surjections

  • Original language description

    We employ the theory of elementary submodels to improve a recent result by Aron, Jaramillo and Le Donne (2017) [1] concerning restricting uniformly open, continuous surjections to smaller subspaces where they remain surjective. To wit, suppose that X and Y are metric spaces and let f:X...Y be a continuous surjection. If X is complete and f is uniformly open, then X contains a closed subspace Z with the same density as Y such that f restricted to Z is still uniformly open and surjective. Moreover, if X is a Banach space, then Z may be taken to be a closed linear subspace. A counterpart of this theorem for uniform spaces is also established.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Comptes Rendus Mathematique

  • ISSN

    1631-073X

  • e-ISSN

  • Volume of the periodical

    355

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    4

  • Pages from-to

    925-928

  • UT code for WoS article

    000413930000001

  • EID of the result in the Scopus database

    2-s2.0-85029579912