All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Extended Kerr–Schild spacetimes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00499282" target="_blank" >RIV/67985840:_____/17:00499282 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1142/9789813226609_0308" target="_blank" >http://dx.doi.org/10.1142/9789813226609_0308</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1142/9789813226609_0308" target="_blank" >10.1142/9789813226609_0308</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Extended Kerr–Schild spacetimes

  • Original language description

    We study geometric and algebraic properties of extended Kerr–Schild spacetimes (xKS) of any dimension, i.e. an extension of the Kerr–Schild (KS) ansatz where, in addition to the null KS vector, a spacelike vector field appears in the metric. In contrast to the KS case, it turns out that xKS spacetimes with a geodetic KS vector are not necessarily algebraically special and we obtain, in general, only a necessary condition under which the KS vector is geodetic. However, if we appropriately restrict the geometry of the null and spacelike vector fields, the condition becomes sufficient and such metrics are algebraically special provided the null KS vector has certain optical properties. Examples of xKS spacetimes belonging to the Kundt class and also expanding xKS spacetimes, namely the CCLP black hole, are given and briefly discussed.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GB14-37086G" target="_blank" >GB14-37086G: Albert Einstein Center for Gravitation and Astrophysics</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    The Fourteenth Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories

  • ISBN

    978-981-3226-59-3

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    2571-2576

  • Publisher name

    World Scientific

  • Place of publication

    Singapore

  • Event location

    Rome

  • Event date

    Jul 12, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article