Circles in the spectrum and the geometry of orbits: a numerical ranges approach
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00483702" target="_blank" >RIV/67985840:_____/18:00483702 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jfa.2017.10.015" target="_blank" >http://dx.doi.org/10.1016/j.jfa.2017.10.015</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jfa.2017.10.015" target="_blank" >10.1016/j.jfa.2017.10.015</a>
Alternative languages
Result language
angličtina
Original language name
Circles in the spectrum and the geometry of orbits: a numerical ranges approach
Original language description
We prove that a bounded linear Hilbert space operator has the unit circle in its essential approximate point spectrum if and only if it admits an orbit satisfying certain orthogonality and almost -orthogonality relations. This result is obtained via the study of numerical ranges of operator tuples where several new results are also obtained. As consequences of our numerical ranges approach, we derive in particular wide generalizations of Arveson's theorem as well. as show that the weak convergence of operator powers implies the uniform convergence of their compressions on an infinite-dimensional subspace.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA14-07880S" target="_blank" >GA14-07880S: Methods of function theory and Banach algebras in operator theory V.</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Functional Analysis
ISSN
0022-1236
e-ISSN
—
Volume of the periodical
274
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
28
Pages from-to
433-460
UT code for WoS article
000417663800004
EID of the result in the Scopus database
2-s2.0-85032886020