Quantitative properties of the Schwarzschild metric
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00488531" target="_blank" >RIV/67985840:_____/18:00488531 - isvavai.cz</a>
Alternative codes found
RIV/61389005:_____/18:00488531
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Quantitative properties of the Schwarzschild metric
Original language description
In this paper we show that the di erence between the Euclidean geometry and Schwarzschild geometry curved by a tiny mass ball can be quite large on galactic and cosmological scales. We also provide formulas for the proper (relativistic) radius and volume of a homogeneous mass ball. For instance, the homogeneous ball, whose mass and radius is the same as that of the Earth, has relativistic volume about 457 km3 larger than its Euclidean volume. Similarly, the Euclidean circumference of the Sun is about 3 km shorter than its relativistic circumference, provided the Sun would be homogeneous. Finally, we give some cosmological applications. In particular, the most probable model of a homogeneous and isotropic universe for a xed time is a three-dimensional hypersphere, since a homogeneous distribution of mass yields a positive curvature.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/LG15052" target="_blank" >LG15052: Investigation of the Microworld using the CERN Infrastructure</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů