All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Non-uniqueness of admissible weak solutions to the Riemann problem for the isentropic Euler equations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00488708" target="_blank" >RIV/67985840:_____/18:00488708 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1088/1361-6544/aaa10d" target="_blank" >http://dx.doi.org/10.1088/1361-6544/aaa10d</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6544/aaa10d" target="_blank" >10.1088/1361-6544/aaa10d</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Non-uniqueness of admissible weak solutions to the Riemann problem for the isentropic Euler equations

  • Original language description

    We study the Riemann problem for multidimensional compressible isentropic Euler equations. Using the framework developed in Chiodaroli et al (2015 Commun. Pure Appl. Math. 68 1157–90), and based on the techniques of De Lellis and Székelyhidi (2010 Arch. Ration. Mech. Anal. 195 225–60), we extend the results of Chiodaroli and Kreml (2014 Arch. Ration. Mech. Anal. 214 1019–49) and prove that it is possible to characterize a set of Riemann data, giving rise to a self-similar solution consisting of one admissible shock and one rarefaction wave, for which the problem also admits infinitely many admissible weak solutions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ17-01694Y" target="_blank" >GJ17-01694Y: Mathematical analysis of partial differential equations describing inviscid flows</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nonlinearity

  • ISSN

    0951-7715

  • e-ISSN

  • Volume of the periodical

    31

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    20

  • Pages from-to

    1441-1460

  • UT code for WoS article

    000426927400002

  • EID of the result in the Scopus database

    2-s2.0-85045276519