Non-uniqueness of admissible weak solutions to the Riemann problem for the isentropic Euler equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00488708" target="_blank" >RIV/67985840:_____/18:00488708 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1088/1361-6544/aaa10d" target="_blank" >http://dx.doi.org/10.1088/1361-6544/aaa10d</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1361-6544/aaa10d" target="_blank" >10.1088/1361-6544/aaa10d</a>
Alternative languages
Result language
angličtina
Original language name
Non-uniqueness of admissible weak solutions to the Riemann problem for the isentropic Euler equations
Original language description
We study the Riemann problem for multidimensional compressible isentropic Euler equations. Using the framework developed in Chiodaroli et al (2015 Commun. Pure Appl. Math. 68 1157–90), and based on the techniques of De Lellis and Székelyhidi (2010 Arch. Ration. Mech. Anal. 195 225–60), we extend the results of Chiodaroli and Kreml (2014 Arch. Ration. Mech. Anal. 214 1019–49) and prove that it is possible to characterize a set of Riemann data, giving rise to a self-similar solution consisting of one admissible shock and one rarefaction wave, for which the problem also admits infinitely many admissible weak solutions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ17-01694Y" target="_blank" >GJ17-01694Y: Mathematical analysis of partial differential equations describing inviscid flows</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinearity
ISSN
0951-7715
e-ISSN
—
Volume of the periodical
31
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
20
Pages from-to
1441-1460
UT code for WoS article
000426927400002
EID of the result in the Scopus database
2-s2.0-85045276519