All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The stack of Yang–Mills fields on Lorentzian manifolds

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00488852" target="_blank" >RIV/67985840:_____/18:00488852 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s00220-018-3120-1" target="_blank" >http://dx.doi.org/10.1007/s00220-018-3120-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00220-018-3120-1" target="_blank" >10.1007/s00220-018-3120-1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The stack of Yang–Mills fields on Lorentzian manifolds

  • Original language description

    We provide an abstract definition and an explicit construction of the stack of non-Abelian Yang–Mills fields on globally hyperbolic Lorentzian manifolds. We also formulate a stacky version of the Yang–Mills Cauchy problem and show that its well-posedness is equivalent to a whole family of parametrized PDE problems. Our work is based on the homotopy theoretical approach to stacks proposed in Hollander (Isr. J. Math. 163:93–124, 2008), which we shall extend by further constructions that are relevant for our purposes. In particular, we will clarify the concretification of mapping stacks to classifying stacks such as BGcon.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Communications in Mathematical Physics

  • ISSN

    0010-3616

  • e-ISSN

  • Volume of the periodical

    359

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    56

  • Pages from-to

    765-820

  • UT code for WoS article

    000429328800010

  • EID of the result in the Scopus database

    2-s2.0-85044241756