Contact discontinuities in multi-dimensional isentropic Euler equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00489412" target="_blank" >RIV/67985840:_____/18:00489412 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Contact discontinuities in multi-dimensional isentropic Euler equations
Original language description
In this note we partially extend the recent nonuniqueness results on admissible weak solutions to the Riemann problem for the 2D compressible isentropic Euler equations. We prove non-uniqueness of admissible weak solutions that start from the Riemann initial data allowing a contact discontinuity to emerge.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ17-01694Y" target="_blank" >GJ17-01694Y: Mathematical analysis of partial differential equations describing inviscid flows</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Journal of Differential Equations
ISSN
1072-6691
e-ISSN
—
Volume of the periodical
2018
Issue of the periodical within the volume
94
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
1-11
UT code for WoS article
000430885900001
EID of the result in the Scopus database
2-s2.0-85046144841