Derivation of the Navier - Stokes - Poisson system with radiation for an accretion disk
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00489961" target="_blank" >RIV/67985840:_____/18:00489961 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/18:10388540
Result on the web
<a href="http://dx.doi.org/10.1007/s00021-017-0358-x" target="_blank" >http://dx.doi.org/10.1007/s00021-017-0358-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00021-017-0358-x" target="_blank" >10.1007/s00021-017-0358-x</a>
Alternative languages
Result language
angličtina
Original language name
Derivation of the Navier - Stokes - Poisson system with radiation for an accretion disk
Original language description
We study the 3-D compressible barotropic radiation fluid dynamics system describing the motion of the compressible rotating viscous fluid with gravitation and radiation confined to a straight layer ..., where omega is a 2-D domain. We show that weak solutions in the 3-D domain converge to the strong solution of the rotating 2-D Navier–Stokes–Poisson system with radiation in omega as ... for all times less than the maximal life time of the strong solution of the 2-D system when the Froude number is small ..., the rotating pure 2-D Navier–Stokes system with radiation in omega as ...
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA16-03230S" target="_blank" >GA16-03230S: Thermodynamically consistent models for fluid flows: mathematical theory and numerical solution</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Fluid Mechanics
ISSN
1422-6928
e-ISSN
—
Volume of the periodical
20
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
23
Pages from-to
697-719
UT code for WoS article
000434046800021
EID of the result in the Scopus database
2-s2.0-85048114105