On the approximation of a virtual coarse space for domain decomposition methods in two dimensions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00490551" target="_blank" >RIV/67985840:_____/18:00490551 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1142/S0218202518500343" target="_blank" >http://dx.doi.org/10.1142/S0218202518500343</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218202518500343" target="_blank" >10.1142/S0218202518500343</a>
Alternative languages
Result language
angličtina
Original language name
On the approximation of a virtual coarse space for domain decomposition methods in two dimensions
Original language description
A new extension operator for a virtual coarse space is presented which can be used in domain decomposition methods for nodal elliptic problems in two dimensions. In particular, a two-level overlapping Schwarz algorithm is considered and a bound for the condition number of the preconditioned system is obtained. This bound is independent of discontinuities across the interface. The extension operator saves computational time compared to previous studies where discrete harmonic extensions are required and it is suitable for general polygonal meshes and irregular subdomains. Numerical experiments that verify the result are shown, including some with regular and irregular polygonal elements and with subdomains obtained by a mesh partitioner.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Models and Methods in Applied Sciences
ISSN
0218-2025
e-ISSN
—
Volume of the periodical
28
Issue of the periodical within the volume
7
Country of publishing house
SG - SINGAPORE
Number of pages
13
Pages from-to
1267-1289
UT code for WoS article
000435580800002
EID of the result in the Scopus database
2-s2.0-85045449042